nanoGUNE Colloquium: Curvilinear magnetism: current research and technology perspectives
CIC nanoGUNE Seminars
- Speaker
-
Denys Makarov
Helmholtz-Zentrum Dresden-Rossendorf - When
-
2024/10/28
11:00 - Place
- CIC nanoGUNE Seminar room, Tolosa Hiribidea 76, Donostia-San Sebastian
- Host
- Andreas Berger
- Add to calendar
- iCal
Extending 2D structures into 3D space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics, superconductivity and magnetism [1,2]. This approach provides means to modify conventional or to launch novel functionalities by tailoring curvature and 3D shape of magnetic thin films and nanowires [2,3]. In this talk, we will address fundamentals of curvature-induced effects in magnetism and review the envisioned application scenarios. In particular, we will demonstrate that curvature allows tailoring fundamental anisotropic and chiral magnetic interactions [4] and enables fundamentally new non-local chiral symmetry breaking effect [5,6]. Application potential of geometrically curved magnetic architectures is currently being explored as mechanically reshapeable magnetic field sensors for automotive applications, memory, spin-wave filters, high-speed racetrack memory devices, magnetic soft robotics [7] as well as on-skin interactive electronics relying on thin films [8,9,10] as well as printed magnetic composites [11,12] with appealing self- healing performance [13].
[1] P. Gentile et al., Electronic materials with nanoscale curved geometries. Nature Electronics (Review) 5, 551 (2022).
[2] D. Makarov et al., New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. Advanced Materials (Review) 34, 2101758 (2022).
[3] D. Makarov et al., Curvilinear micromagnetism: from fundamentals to applications (Springer, Zurich, 2022).
[4] O. Volkov et al., Experimental observation of exchange-driven chiral effects in curvilinear magnetism. Physical Review Letters 123, 077201 (2019).
[5] D. D. Sheka et al., Nonlocal chiral symmetry breaking in curvilinear magnetic shells. Communications Physics 3, 128 (2020).
[6] O. M. Volkov et al., Chirality coupling in topological magnetic textures with multiple magnetochiral parameters. Nature Communications 14, 1491 (2023).
[7] M. Ha et al., Reconfigurable Magnetic Origami Actuators with On-Board Sensing for Guided Assembly. Advanced Materials 33, 2008751 (2021).
[8] G. S. Canon Bermudez et al., Magnetosensitive e-skins for interactive devices. Advanced Functional Materials (Review) 31, 2007788 (2021).
[9] J. Ge et al., A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications 10, 4405 (2019).
[10] G. S. Canon Bermudez et al., Electronic-skin compasses for geomagnetic field driven artificial magnetoception and interactive electronics. Nature Electronics 1, 589 (2018).
[11] M. Ha et al., Printable and Stretchable Giant Magnetoresistive Sensors for Highly Compliant and Skin-Conformal Electronics. Advanced Materials 33, 2005521 (2021).
[12] E. S. Oliveros Mata et al., Dispenser printed bismuth-based magnetic field sensors with non-saturating large magnetoresistance for touchless interactive surfaces. Adv. Mater. Technol. 7, 2200227 (2022).
[13] R. Xu et al., Self-healable printed magnetic field sensors using alternating magnetic fields. Nature Communications 13, 6587 (2022).