Room Temperature Spin Hall Effect in Graphene/MoS2 Van Der Waals Heterostructures

CIC nanoGUNE Seminars

Safeer Chenattukuzhiyil, Nanodevices group
nanoGUNE seminar room, Tolosa Hiribidea 76, Donostia - San Sebastian
Add to calendar
Subscribe to Newsletter
Room Temperature Spin Hall Effect in Graphene/MoS2 Van Der Waals Heterostructures Graphene is an excellent material for long distance spin transport but allows little spin manipulation. Transition metal dichalcogenides imprint their strong spin-orbit coupling into graphene via proximity effect, and it has been predicted that efficient spin-to-charge conversion due to spin Hall and Rashba-Edelstein effects could be achieved. Here, by combining Hall probes with ferromagnetic electrodes, we unambiguously demonstrate experimentally spin Hall effect in graphene induced by MoS2 proximity and for varying temperature up to room temperature. The fact that spin transport and spin Hall effect occur in different parts of the same material gives rise to a hitherto unreported efficiency for the spin-to-charge voltage output. Additionally, for a single graphene/MoS2 heterostructure-based device, we evidence a superimposed spin-to-charge current conversion that can be indistinguishably associated with either the proximity-induced Rashba-Edelstein effect in graphene or the spin Hall effect in MoS2. By comparing our results to theoretical calculations, the latter scenario is found the most plausible one. Our findings pave the way towards the combination of spin transport and spin- to-charge conversion in two-dimensional materials, opening exciting opportunities in a variety of future spintronic applications. **Reference** : C. K. Safeer, et al., Nano letters, DOI: 10.1021/acs.nanolett.8b04368 (2019)