On the way of stabilizing perovskite material: A fundamental study via Scanning Tunneling Microscopy and Photoelectron Spectroscopy
CIC nanoGUNE Seminars
- Speaker
-
Jeremy Hieulle, Nanoimaging Group
- When
-
2020/05/11
13:00 - Place
- nanoGUNE seminar room, Tolosa Hiribidea 76, Donostia - San Sebastian
- Add to calendar
- iCal
In an effort to limit the current spread of COVID-19, all seminars are
**canceled **beginning Thursday March 12th until further notice
**
**
**On the way of stabilizing perovskite material: A fundamental study via
Scanning Tunneling Microscopy and Photoelectron Spectroscopy**
**
**
Jeremy Hieulle1
1Energy Materials and Surface Sciences Unit (EMSS), Okinawa Institute of
Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son,
Okinawa 904-0495, Japan.
[*j.hieulle@nanogune.eu](mailto:*j.hieulle@nanogune.eu)
Organic-inorganic perovskite solar cells are currently under the spotlight.
Despite numerous advantages, their poor stability hinders commercialization of
perovskite-based devices. To increase perovskite stability various strategies
have been envisaged [1]. Mixing different halides (I, Br, Cl) has been shown
both experimentally and theoretically to have a strong impact on the device
performance and stability [2-5]. However, the stabilizing effect of the
halides critically depends on their distribution in the mixed compound, a
topic that is currently under intense debate [6-8]. A fundamental
understanding remains largely elusive regarding the correlation between the
structure of the mixed-perovskites and their electronic properties at the
atomic level.
In this work, combining scanning tunneling microscopy (STM), density
functional theory (DFT) and UV/X-ray photoelectron spectroscopy (UPS/XPS), we
reveal the exact location of I and Cl anions in the mixed CH3NH3PbBr3-yIy and
CH3NH3PbBr3-zClz perovskite lattices. Additionally, we demonstrate the impact
of halide-incorporation on the material electronic properties and stability.
Furthermore, we determine the ideal Cl-incorporation ratio for stability
increase without detrimental bandgap modification. The increased material
stability induced by chlorine incorporation is verified by performing
photoelectron spectroscopy on a device architecture. Our findings provide an
important direction for the fabrication of stable perovskite devices.
**References:**
[1] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical
Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid
Nanostructured Solar Cells. Nano Letters **2013,** 13 (4), 1764-1769.
[2] Liu, J.; Prezhdo, O.V. J. Phys. Chem. Lett. **2015** , 6 (22), 4463.
[3] Quarti, C.; Mosconi, E.; Umari, P.; De Angelis, F. Inorg. Chem. **2017** ,
56, 74.
[4] Colella, S.; Mosconi, E.; Pellegrino, G.; Alberti, A.; Guerra, V.L.P.;
Masi, S.; Listorti, A.; Rizzo, A.; Condorelli, G.G.; De Angelis, F.; Gigli, G.
J. Phys. Chem. Lett. **2014** , 5 (20), 3532.
[5] Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. Adv. Funct. Mater.
**2014** , 24, 7102.
[6] Ye, M.; Hong, X.; Zhang, F.; Liu, X. J. Mater. Chem. A **2016** , 4, 6755.
[7] Zhang, T.; Yang, M.; Benson, E.E.; Li, Z.; Lagemaat, J.; Luther, J.M.;
Yan, Y; Zhu, K; Zhao, Y. Chem. Commun. **2015** , 51, 7820.
[8] Luo, S.; Daoud, W.A. Materials **2016** , 9, 123.