Imaging electrically-induced interconversion between antiferromagnetism and ferromagnetism just above room temperature
CIC nanoGUNE Seminars
- Speaker
-
L.C. Phillips, CNRS, Palaiseau, France
- When
-
2014/06/23
12:00 - Place
- nanoGUNE seminar room, Tolosa Hiribidea 76, Donostia - San Sebastian
- Add to calendar
- iCal
**PLEASE NOTE THE SEMINAR IS AT 10AM**
**
**
**Host** : Luis Hueso
_L. C. Phillips 1_, R. O. Cherifi1, V. Ivanovskaya1, A. Zobelli2, I. C.
Infante3, E. Lesne1, E. Jacquet1, V. Garcia1, S. Fusil1,4, P. R. Briddon5, N.
Guiblin3, A. Mougin2, A. A. Ünal6, S. Valencia6, B. Dkhil3, A. Barthélémy1
and M. Bibes1
1Unité Mixte de Physique CNRS/Thales and Université Paris-Sud, Orsay, France
2Laboratoire de Physique des Solides, Université Paris-Sud, Orsay, France
3Laboratoire SPMS, Ecole Centrale Paris, Châtenay-Malabry, France
4Université d’Evry-Val d’Essonne, Evry, France
5School of Electrical Engineering, University of Newcastle, Newcastle-upon-
Tyne, UK
6Helmholtz-Zentrum Berlin, Berlin, Germany
Controlling magnetism by electric fields is an important research goal [1,2]
with possible applications in spintronics [3]. Despite advances in the
electric field control of magnetic anisotropy [4], domain structure [5], spin
polarization [6] and critical temperature [7], on-off switching of robust
ferromagnetism at room temperature remains to be demonstrated.
The ordered, near-equiatomic phase of the Fe-Rh alloy system is an interesting
candidate material because it shows a metamagnetic transition that can be
driven by temperature, pressure or magnetic field. We recently used BaTiO3
(BTO) substrates that are ferroelectric and ferroelastic to dynamically drive
the metamagnetic transition in thin FeRh films [8]. The BTO domains can be
rearranged by applying only a few volts, and so the system’s effective
magnetoelectric coupling constant is the largest yet measured.
Here we use x-ray magnetic circular dichroism (XMCD) contrast in photoemission
electron microscopy (PEEM) to show that sub-micron-sized ferromagnetic (F)
regions are created in FeRh and coexist with the antiferromagnetic (AF) phase.
Detailed ab-initio calculations show that the relative stability of the F and
AF phases is tuned primarily by the changes in the pseudocubic lattice
parameter of strained FeRh, despite the changes in bond angles that arise due
to monoclinic distortions.
Our work opens new avenues for spintronics using ferroelectrics and magnetic
materials with first-order phase transitions.
This work received financial support from the French Agence Nationale de la
Recherche through project NOMILOPS (ANR-11-BS10-0016) and the European
Research Council Advanced Grant FEMMES (contract n°267579).
[1] Vaz, _J. Phys. Condens. Matter_ **24** , 333201 (2012)
[2] Fusil _et al_., _Annu. Rev. Mater. Res._ **2014** , 44:7 (2014)
[3] Chappert _et al., Nature Mater._ **6** , 813 (2007)
[4] Weiler _et al., New J. Phys._ **11** , 013021 (2009)
[5] Ghidini _et al., Nature Commun._ **4** , 1421 (2013)
[6] Garcia _et al., Science_ **327** , 1106 (2010)
[7] Chiba _et al., Nature Mater._ **10** , 853 (2011)
[8] Cherifi _et al., Nature Mater._ **13** , 345 (2014)