Plasmonic Nanoparticles and Fluorescence
DIPC Seminars
- Speaker
-
Prof. Thomas A. Klar, Johannes Kepler University Linz, Austria
- When
-
2016/09/28
14:00 - Place
- Donostia International Physics Center
- Add to calendar
- iCal
Metallic nanoparticles are apt to modify the luminescence yield from organic
molecules in their immediate nano-environment. In case of photoluminescence,
they influence both the nonradiative and the radiative rate.1 The latter can
be tuned that much that even Purcell-like changes of the fluorescence spectra
can be observed.2 Thinking one step further, from the Purcell effect, which
influences spontaneous transitions, to stimulated transitions, one may end up
with nanoscale lasers or even the "spaser", which however faces fundamental
limitations form the materials point of view.3 Star shaped plasmonic
nanoparticles have been shown to improve the yield of electroluminescence in
organic light emitting diodes.4
Plasmons can also substantially improve the quantum efficiency of the
intrinsic luminescence from gold stemming from the recombination of d-band
holes with sp electrons.5 Recently, we have observed an anticorrelation of the
intensity of the d-band luminescence with the intensity of the hot spots
between two gold nanoparticles6 and we have found that gold nanosponges, while
showing highly polarized scattering spectra,7 produce much less polarized
luminescence spectra.
1. Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M.; Gittins, D. I., Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett. 2002, 89 (20), 203002.
2. Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J., Shaping Emission Spectra of Fluorescent Molecules with Single Plasmonic Nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.
3. Arnold, N.; Hrelescu, C.; Klar, T. A., Universal Minimal Spaser Threshold within Electrodynamic Framework: Shape, Size and Modes. Annalen der Physik 2016, 528 (3-4), 295.
4. Munkhbat, B.; Pöhl, H.; Denk, P.; Klar, T. A.; Scharber, M. C.; Hrelescu, C., Performance boost of organic light emitting diodes with plasmonic nanostars. Adv. Opt. Mat. 2016, 4 (5), 772.
5. Dulkeith, E.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; von Plessen, G.; Gittins, D. I.; Mayya, K. S.; Caruso, F., Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B 2004, 70, 205424.
6. Sivun, D.; Vidal, C.; Munkhbat, B.; Arnold, N.; Klar, T. A.; Hrelescu, C., Anticorrelation of photoluminescence from gold nanoparticle dimers with hot-spot intensity. Submitted for publication.
7. Vidal, C.; Wang, D.; Schaaf, P.; Hrelescu, C.; Klar, T. A., Optical Plasmons of Individual Gold Nanosponges. ACS Photonics 2015, 2, 1436-1442.