Attosecond Physics at the nanoscale: the next frontier
DIPC Seminars
- Speaker
-
Marcelo Ciappina, ELI-Beamlines, Institute of Physics , Czech Republic
- When
-
2017/11/24
13:00 - Place
- Donostia International Physics Center
- Add to calendar
- iCal
Recently two, a priori, different branches of physics have started to merge.
One is attosecond
physics, that deals with, both theoretical and experimentally, the phenomena
which take place
when ultrashort laser pulses, with durations ranging from the attosecond to
the femtosecond
time scale, interact with atoms, molecules or solids. The laser-induced
electron dynamics
occurs natively at an attosecond time scale (1 attosecond=10-18s), where e.g.
the period of a
classical electron in a hydrogen atom is 152 as) and consequently, the
underlying physics
requires tools employing attosecond time resolution (both in theory and
experiments). This
subject has reached great maturity on the basis of well-established
theoretical developments
and the understanding of different nonlinear phenomena, as well as thanks to
the formidable
advances in experimental techniques. Nowadays, for instance, measurements with
attosecond
precision are routinely performed in several facilities around the world.
The second branch involves the manipulation and engineering of mesoscopic
systems, e.g.
solids, metals, dielectrics, with nanometric precision, a scale that was only
reached recently.
In this way, it is possible to design and build bulk matter samples which pave
the way to
study light-matter interaction in a completely new regime.
In this seminar I`ll summarize the theoretical work we have done to tackle the
underlying
physics of laser-matter processes driven by spatially and temporal synthesized
fields, with a
main emphasis in above-threshold ionization (ATI) and high-order harmonics
generation
(HHG) in atoms and molecules induced by plasmonic fields [1]. It is well known
that one of
the main theoretical assumptions in the modelling of laser-matter phenomena is
that the laser
electric field is spatially homogeneous in the region where the electron
dynamics takes place.
When we relax this premise, i.e. when the laser electric field presents
variations at a
nanometric scale, we open a new and unexplored scenario until now. By using
classical,
semiclassical and quantum mechanical theoretical tools we were able to shed
some light
about the modifications produced by spatially inhomogeneous fields -fields
that present
spatial variations in a scale comparable to the one of the electron dynamics.
I will also discuss
about the experimental challenges we face, in order to confirm our
predictions, and
alternative approaches we thought could be more plausible to implement. At the
end of the
talk I`ll present a brief summary of other current and future projects.
[1] M. F. Ciappina, et al. Attosecond Physics at the nanoscale, Rep. Prog.
Phys 80, 054401
(2017)